Doping effects of Strontium on ZnONanorods and their Photocatalytic properties

P Gowthaman, M Saroja, M Venkatachalam, J Deenathayalan, S Shankar

Abstract


Zinc oxide (ZnO) nanorods and ZnOnanorods doped with strontium was prepared by a wet chemical method. ZnOnanorod samples were investigated by x-ray diffraction, scanning electron microscopy, energy-dispersion x-ray analysis and UV–visible absorption spectroscopy. Based on these characterizations, the films with 1:10 growth solution concentration and 500° C annealed temperature own the maximum response to grow better ZnOnanorods. Strontium was doped in ZnOnanorods. Methelene Blue (MB) dye degradation was carried out with ZnOnanorods and strontium doped ZnOnanorods and photocatalytic performance under UV light was recorded. Strontium ions acted as the trapping or recombination centers for electrons and holes, leading to a reduction in photo degradation efficiency under UV light illumination. Alternatively, undopedZnOnanorods enhanced the photo degradation efficiency. The photocatalytic performance indicated that undopedZnOnanorods possessed a high photocatalytic activity than the doped ZnOnanorods.


Keywords


Strontium doped ZnOnanorods - Photo catalysis - Methylene blue dye.

References


Ali, A. M.; Emanuelsson, E. A. C.; Patterson, D. A. Appl. Catal. B, 97, doi: 10.1016 /j.apcatb.2010.03.037 (2010), 168–181.

Pardeshi, S. K.; Patil, A. B. J. Mol. Catal. A: Chem. doi:10.1016 /j.molcata. 2009.03.023, (2009) 308, 32–40.

Qamar M.; Muneer M. Desalination 2009, 249, doi:10.1016 /j.desal.01.022 (2009), 535–540.

Poulios, I.; Makri, D.; Prohaska, X. Global NEST, 1, (1999), 55–62.

Carraway, E. R.; Hoffman, A. J.; Hoffmann, M. R. Environ. Sci. Technol., 28, doi:10.1021/es00054a007 (1994) 786–793.

M. Miyauchi, A. Nakajima, T. Watanabe, K. Hashimoto, Photocatalysis and photo induced hydrophilicity of various metal oxide thin films, Chem. Mater. 14, (2002) 2812–2816.

A. Akyol, M. Bayramoglu, Photocatalytic degradation of Remazol Red F3B using ZnO catalyst, J. Hazard. Mater. B 124, (2005) 241–246.

N Daneshvar, D Salari, A.R.Khataee, Photocatalytic degradation of azo dye acid red 14 in water on ZnO as an alternative catalyst to TiO2, J. Photochem. Photobiol. A: Chem. 162, (2004) 317–322.

R. Comparelli, E. Fanizza, M.L. Curri, P.D. Cozzi, G. Mascolo, G. Agostiano, UV-induced photocatalytic degradation of azo dyes by organic-capped ZnO nanocrystals immobilized onto substrates, Appl. Catal. B: Environ. 60, (2005) 1–11.

V. Kandavelu, H. Kastien, K.R. Thampi, Photocatalytic degradation of isothiazolin-3-ones in water and emulsion paints containing nanocrystalline TiO2 and ZnO catalysts, Appl. Catal. B: Environ. 48, (2004) 101–111.

P.Percherancier, R.Chapelon, B.Pouyet, Semiconductor-sensitized photodegradation of pesticides in water, J. Photochem. Photobiol. A: Chem. 87, (1995) 261–266.

A.A. Khodja, T. Sehili, J.F. Pihichowski, P. Boule, Photocatalytic degradation of 2-phenylphenol on TiO2 and ZnO in aqueous suspensions, J. Photochem. Photobiol. A: Chem. 141, (2001) 231–239.

G. Wang, D. Chen, H. Zhang, J.Z. Zhang, J.H. Li, Tunable photocurrent spectrum in well-oriented zinc oxide nanorod arrays with enhanced photocatalytic activity, J. Phys. Chem. C 112, (2008) 8850–8855.

Hornyak, G. L.; Dutta, J.; Tibbals, H. F.; Rao, A. Introduction to nanoscience; CRC Press: Boca Raton, 2008.

Kimura, T.; Yamauchi, Y.; Miyamoto, N. Chem.–Eur. J., doi:10.1002/chem.201001251 (2010)16,12069–12073.

Baruah S, Thanachayanont C and Dutta J.Sci. Technol. Adv. Mater. 9, (2008) 025009.

Wang, R.; Xin, J. H.; Yang, Y.; Liu, H.; Xu, L.; Hu, doi:10.1016/j.apsusc.2003.12.012 , J. Appl. Surf. Sci., 227, (2004) 312–317.

Vanheusden, K.; Warren, W. L.; Voigt, J. A.; Seager, C. H.; Tallant, D. R. doi:10.1063/1.114397, Appl. Phys. Lett., 67, (1995) 1280–1282.

Colis, S.; Bieber, H.; Begin-Colin, S.; Schmerber, G.; Leuvrey, C.; Dinia, doi:10.1016/j.cplett.2006.02.109, A. Chem. Phys. Lett., 422, (2006) 529–533.

Ullah R. Dutta J. doi:10.1016 /j.jhazmat 2007.12.0 33, J.Hazard.Mater,156, (2008) 194–200.

Baruah, S.; Rafique, R. F.; Dutta, doi:10.1142 /S17932920080 0126X , J. NANO, 3, (2008) 399–407.

N. Daneshvar, D. Salari, A.R. Khataee, J. doi:10.1016 /S1010-6030(03)00015-7, Photochem, Photobiol. A. Chem. 157, (2003) 111.

Baruah, Rafique, Dutta, .doi: 10.1142 /S179329200

X,, J.NANO, 3, (2008) 399–407.

P.Gowthaman, M.Saroja, M.Venkatachalam,

J.Deenathayalan, T.S.Senthil, Continental J.

Applied Sciences 6 (3): (2011) 75 – 82.

Oleg Lupan, Lee Chowa, Guangyu Chai, Beatriz Roldan, Ahmed Naitabdi, Alfons Schulte, Helge Heinrich, Materials Science and Engineering B 145, (2007) 57.

Baruah. S, Dutta.J, doi: 10.1016 /j.jcrys gro. 01.135, J.Cryst.Growth, 311, (2009) 2549-2554.

Wilson.E, Chem.Eng.News, 74, (1996) 29-33.

W. Z. Shen, L. F. Jiang, H. F. Yang and F. Y. Meng, Appl. Phys. Lett. 80, (2002) 2063.

A. Akyol, H.C. Yatmaz, M. Bayramoglu, Appl. Catal. B Environ. 54, 19 (2004).

M.S.T. Gonclaves, A.M.F. Oliveira-Campose, E.M.M.S. Pinto, P.M.S. Plasencia, M.J.R.P Queiroz, Chemosphere, doi:10.1016/S0045-6535(99)00013-2, 39:781, (1999).


Full Text: PDF

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution 3.0 License.

.......................................................................................................................................................................................................................

ISSN  2279 – 0381 |  IST HOMEJOURNAL HOME | Copyright IST 2012-13

.......................................................................................................................................................................................................................