Medical Image Compression of Dental X-Ray Image Using Biorthogonal Wavelet Transform in MATLAB

S Sathya, M Pavithra, S Muruganand, Azha Periasamy

Abstract


Images require substantial digitization of data and increasing use of telemedicine, most of the image  data  in  hospitals  are  stored  in  digital  form  using  picture  archiving  and  communication systems. The  need  for  data  storage  and  bandwidth  requirements  is  increasing  and  wavelet compression techniques have become a necessity. The successful use of the wavelet transform in the  field  of  image  compression  has  been  extensively  studied Joint Photographic Experts Group  (jpeg) in medical image(teeth).The  main  objective  is  to  investigate  the  still  image  compression  and  de-noising  of a  gray  scale  image  using  wavelet  theory  at  different  decomposition  and  threshold  levels.  The wavelet    analysis    is    the   most    recent    analyzing    tool.    The   medical image compression (dental x-ray image) using biorthogonal wavelet family is implemented in software using MATLAB7.5 version Wavelet Toolbox technique.

 


Keywords


Digital X-ray image (Dental), Image compression, Wavelet Transform, PSNR Values, Compression Ratio.

References


J. H. Pujar and L. M. Kadlaskar, “A New Lossless Method of Image Compression and Decompression Using Huffman Coding Technique,” Journal of Theoretical and Applied Information Technology, Vol. 15, No. 1, 2010.

S.Al-Hashemi,T .khdour,M.Hjoiy Btoush,S.Bani-Ahmad,R.Hashemi, “Lossless Image Compression Technique Using Combination method,” Journal of Software Engineering and Applications, 2012, 5, pp752-763 doi:10.4236/jsea.2012.510088

Ranbeer Tyagi, D.K.Sharma, “Digital Image Compression Comparisons Using DPCM and DPCM With LMS Algorithm”, International A.Alarabyyat Journal of Computer Applications & Information Technology Vol. I, Issue II, September 2012 (ISSN: 2278-7720)

N.Senthilkumarn, Member IACSIT and Dr.J.Suguna,”Neural Network Technique For Lossless Image Compression Using X-ray Image”, International Journal of Computer and Electrical Engineering, Vol.3, No.1, February, 2011 1793-8163.

A Fidler,B Likar, F Pernus and U Skaleric,”Impact of JPEG Lossy Image Compression on Quantitative Digital Subtraction Radiography”, Dentomaxillofacial Radiology (2002) 31, pp106 - 112. DOI : 10.103 8/sj/dm fr/4600670

Puneet Sagar Ashok Kumar, “Best-Wavelet Based X-Ray Image Compression Using Neural Network”, International Journal of Research in Engineering, IT and Social, Volume1, Issue 2 ISSN: 2250-0588 ,

Rafael C. Gonzalez and Richard E.Woods Digital Image Processing (Pearson Education, Second Edition).

Prabhakar. Telagarapu, V.JaganNaveen, A.Lakshmi. Prasanthi, G.Vijaya Santhi “Image Compression Using DCT and Wavelet Transformations” International Journal of Signal Processing, Image Processing and Pattern Recognition Vol. 4, No. 3, September, 2011.

Albertus Joko Santoso, Dr. Lukito Edi Nugroho, Dr. Gede Bayu Suparta, Dr. Risanuri Hidayat,” Compression Ratio and Peak Signal to Noise Ratio in Grayscale Image Compression using Wavelet”, ISSN : 2229-4333(Print) | ISSN : 0976-8491(Online), IJCST Vol 2, ISSUE 2,June 2011.

Talukder, K.,H., dan Harada, K., "Haar Wavelet Based Approach for Image Compression and Quality Assessment of Compresed Image", IAENG International Journal of Applied Mathematics, 36:1, IJAM_36_1_9, 2007.


Full Text: PDF

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution 3.0 License.

.......................................................................................................................................................................................................................

ISSN  2279 – 0381 |  IST HOMEJOURNAL HOME | Copyright IST 2012-13

.......................................................................................................................................................................................................................