Structural, Morphological and Optical Features Of Sno2 and Cu2o Doped Tio2 Nanocomposites Prepared by Sol-Gel Method

D Sridhar, N Sriharan

Abstract


Synthesis of SnO2 and Cu2O doped TiO2 nanocomposites using sol-gel method in the laboratory. Sol-gel technique can provide a simple, economic and effective method to produce high quality coatings. Both sol-gels were thermally treated at 4000C. The crystal structure, particle size, molecular structures, morphology and optical properties of the products were investigated by XRD, SEM –EDX and UV studies. From XRD analysis, SnO2 and Cu2O doped TiO2 particles average crystalline size was about 15 nm and 22 nm as estimated using the Debye-scherrer’s formula. Both samples at shorter wavelengths, the transmittance first slightly rose, and then rather quickly, finally approached zero at around 330 nm. The fast decrease below 350 nm was due to the absorption of light caused by the excitation of electrons from the valence bond to the conduction bond of TiO2.

Keywords


Titanium dioxide, Tin Oxide, Cuprous Oxide, Sol gel, Nanocomposites.

References


. Sigel Rw, Ramasamy S, Hahn H, Li Z. Lu T. Gronsky R. J Mater Res 3:1367(1988).

. Morales BA, Novaro O, Lopez T, Sanchez E, Gomez R. J Mater Res 10:2788(1995).

. Terwillinger CD, Chiang YM Nanostruct Mater 2:37(1993).

. Fukuji S.Kazuaki, H.Kazuaki, Y.Yukio, M.Yoshitoma, Preparation and optical properties of TiO2 Iride scent pigment based on black Titanium Oxynitride J.Jpn soc.colour mater 79:526-532(2006).

. Fujishima, A.Zhaong, X.Froyk, DA., TiO2 photo catalyzing and related surface phenomena surf.sci.rep. 63:515-582 (2008).

. O’ Regan B, Grätzel M Nature 352:373(1991).

. A.M.Kamalan, Kirubaharan, M.Selvaraj, K.Marudhan, D.Jayakumar, Synthesis and characterization of nanosized TiO2 and SiO2 for corrosion resistance applications 25 Nov (2009).

. Lim.Bc.Thomas, NL, Sutherland, I. Surface energy measurement of coated TiO2 pigment prog.org.coat.62:123-128 (2008).

. F. Bosc, A. Ayral, P.A. Albouy, C. Guizard, A Simple route for low-temperature synthesis of mesoporous and nanocrystalline anatase thin films, Chem. Mater.15:2463–2468 (2003).

. H. Hansel, H. Zettl, G. Krausch, R. Kisselev, M. Thelakkat, H.W. Schmidt, Optical and electronic contributions in double-heterojunction organic thin-film solar cells, Adv. Mater. 15:2056–2060 (2003).

. M.H. Liao, C.H. Hsu, D.H. Chen, Preparation and properties of amorphous titania coated zinc oxide nanoparticles, J. Solid State Chem. 179:2020–2026 (2006).

. X.G. Peng, M.C. Schlamp, A.V. Kadavanich, A.P. Alivisatos, Epitaxial growth of highly luminescent cdse/cds core/shell nanocrystals with photostability and electronic accessibility, J. Am. Chem. Soc. 119:7019–7029 (1997).

. K.Anandan*, S.Gnanam, J.Gajendiran, V.Rajendran “Effect of temperature on SnO2 nanoparticles-facile solvothermal synthesis and characterization” 49. Poster 26, NCMNN (2010).

. R. Liu, E.A. Kulp, F.E. Oba, W. Bohannan, F. Ernst, J.A. Switzer, Epitaxial electrodeposition of high-aspect-ratio Cu2O(110) nanostructures on InP(111), Chem.Mater. 17:725–729 (2005).

. P. Poizot, S. Laruelle, S. Grugeon, L. Dupont, J.M. Taracon, Nano-sized transition metaloxides as negative- electrode materials for lithium-ion batteries, Nature 407:496–499 (2000).

. S. Guo, Y. Fang, S. Dong, E. Wang, Templateless, surfactantless, electrochemical route to a cuprous oxide microcrystal: from octahedra to monodisperse colloid spheres, Inorg. Chem. 46:9537–9539(2007).

. J. Li, Y. Shi, Q. Cai, Q. Sun, H. Li, X. Chen, X. Wang, Y. Yan, E.G. Vrieling, Patterning of nanostructured cuprous oxide by surfactant-assisted electrochemical deposition, Cryst. Growth Des. 8:2652–2659 (2008).

. C.H. Kuo, M.H. Huang, Fabrication of truncated rhombic dodecahedral Cu2O nanocages and nanoframes by particle aggregation and acidic etching, J. Am. Chem. Soc. 130:12815–12820 (2008).

. D. Liu, S. Yang, S.T. Lee, Preparation of novel cuprous oxide-fullerene [60] core-shell nanowires and nanoparticles via a copper (I)-assisted fullerene polymerization reaction, J. Phys. Chem. C 112:7110–7118 (2008).

. Yin S, Ihra K, Aita Y, Komatsu M, Sata T. Visible-light induced photocatalytic activity of TiO2-xAy (A ¼ N, S) prepared by precipitation route. J Photochem Photobiol A: Chem. 179: 105–14 (2006).

. Luo H, Takata T, Lee Y, Zhao J, Domen K, Yan Y. Photocatalytic activity enhancing for titanium dioxide by co-doping with bromine and chlorine. Chem Mater 16: 846–9 (2004).

. Jin Z, Zhang X, Li Y, Li S, Lu G. 5.1% apparent quantum efficiency for hydrogen generation over eosine-sensitized CuO/TiO2 photocatalyst under visible light irradiation. Catal Commun 8: 1267–73 (2007).

. Liqiang J, Honggang F, Baiqi W, Dejun W, Baifu X, Shudan L, et al. Effects of Sn dopant on the photoinduced charge property and photocatalytic activity of TiO2 nanoparticles. Appl Catal B: Environ 62:282–91 (2006).

. Jongh PE, De Vanmaekrelberg D, Kelly JJ. Cu2O: a catalyst for the photochemical decomposition of water. Chem Commun 12:1069e70 (1999).

. Sasikala R, Shirole A, Sudarsan V, Sakuntala T, Sudakar C, Naik R, et al. Highly dispersed phase of SnO2 on TiO2 nanoparticles synthesized by polyolmediated route: photocatalytic activity for hydrogen generation. Int J Hydrogen. Energy.34:3621e30 (2009).

. JCPDS PDF-2 pattern 02-0387 & TiO2 89-8304.

. JCPDS PDF-2 pattern 88-1172 & TiO2-SnO2 78-1063, 81-1387.

. JCPDS PDF-2 pattern 05-0667.

. F.A.Deorsola. D.Vallauri J Mater Sci 43:3274-3278 (2008).

. Zhou Y. and Wu G.H., Material Analysis and Test Technique- XRD and Electronic Macroscopic Analysis of Material, Harbin Institute of Technology press, Harbin, 2001.

. Nadica D.Abazović.Luciana Mirenghi. et.,al Nanoscale Res Lett 4:518-525 (2009).

. WANG Hang, TANG zhiyuan, SUN Lei. et.,al RARE METALS Vol.28.No.3, 231-236 (2009).

. J.G.Yu, X.J.Zhao, D.Ch DU, and W.M.Chen, J.Sol-Gel Sci. Tech-17,163 (2000).

. JIAGUO YU*, JIMMY C.YU.et.,al. Journal of Sol-Gel Science & Technology 24:39-48 (2002).

. Ayib Rosdi Zainun, Sakamoto Tomoya, Uzer Mohd Noor, et al New approach for generating Cu2O/TiO2 composite films for solar cell applications. Materials Letters 66:254–256 (2012).

. Zhong Huang.Weiliang Cao.et.,al, “Photoelectric study on a new semiconductor:6,13-diphenylpentacene and TiO2 nanocomposites film ”J Mater Sci :Mater Electron.


Full Text: PDF

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution 3.0 License.

.......................................................................................................................................................................................................................

ISSN  2279 – 0381 |  IST HOMEJOURNAL HOME | Copyright IST 2012-13

.......................................................................................................................................................................................................................