Investigation of Physico-Chemical Properties of Tio2 Nanorod by Direct Sol Filling and Heating Sol-Gel Template Method

R Mahendiran, K Navaneetha Pandiyaraj, K Kandavelu, D Saravanan

Abstract


TiO2 nanso structured material has been used in various industrial applications. The characteristics which played vital role to improve the efficiency of the TiO2 nano materials used for the above mentioned applications. In the present work, preparation of TiO2 nanorods by novel direct sol filling and heating sol-gel template method using titanium (IV) isopropoxide as a precursor is presented.  After, the obtained TiO2 nanorods are treated by dc excited glow discharge oxygen plasma as a function of power level. The structure, morphology and chemical state of the TiO2 nanorods are analyzed by X-ray diffraction (XRD), scanning Electron Microscope (SEM), transmission electron microscopy (TEM) and X-ray photo electron spectroscopy (XPS).  It was found that the structure of the both as prepared and plasma treated TiO2 nanorod exhibited the anatase phase and the size was found to be 10 nm. XPS results clearly revealed that the as prepared TiO2 nanorod contained 99% of Ti4+ oxidation state which further converted to Ti3+ state by oxygen plasma treatment. Hence the phase, size and changes in chemical state induced by the plasma treatment can facilitate to enhance the efficacy of the TiO2 nanorods which suitable for different practical applications.

Keywords


Sol gel method, TiO2 nanorod, alumina template, TEM, XPS, Oxygen plasma.

References


Prashant V. Kamat, TiO2 nanostructures: recent Physical Chemistry Advances, J. Phys. Chem. C, 116 (2012) 11849-11851.

X. Chen and Samuel S.Mao, Titanium Dioxide Nanomaterials: Synthesis, Properties, Modifications, and Applications, Chem. Rev., 107 (2007), 2891-2959.

Akira Fujishima, Tata N. Rao, Donald A. Tryk, Titanium dioxide photocatalysis, J. Photo chem. and Photobiology C: Photochemistry reviews 1(2000) 1-21.

Z-Y Yuan, Bao-Lian Su, Titanium oxide nanotubes, nanofibers and nanowires, Colloids and Surfaces A: Physicochemical and Engineering Aspects. 241 (2004) 173-183.

J. Hu, T.W. Odom, C.M Lieber, Chemistry and Physics in one dimension: synthesis and properties of nanowires and nanotubes, Accounts of chemical research, 32 (1999) 435-445.

Z-Y. Yuan, J-F Colomer, B-L Su, Titanium oxide nanoribbons, Chem. Phys. Lett. 363 (2002) 362.

Dongjin Byun, Yongki Jin, Bumjoon Kim, Joong Kee Lee, Dalkeun Park, Photocatalytic TiO2 deposition by chemical vapor deposition, journal of hazardous materials, 73 (2000), 199-206.

Geng Wang, Qiang Wang, Wu Lu, and Jinghong Li, Photoelectrochemical study on Charge Transfer Properties of TiO2-B Nanowires with an Application as Humidity sensors, J. Phys. Chem. B, 110 (2006), 22029-22034.

Eun Yi Kim, Hyorim Choi, Chin Myung Whang, Controlled growth of TiO2 nanorods capped with carboxylate groups by the solvothermal process, J. Mater Sci, 45 (2010), 3895-3900.

Zhen Wei, Yu Yao, Tao Huang, Aishui Yu, Solvothermal growth of Well-Aligned TiO2 Nanowire Arrays for Dye-Sensitized Solar Cell: Dependence of morphology and vertical orientation upon substrate pretreatment, Int, J Electrochem. Sci., 6 (2011), 1871-1879.

Abdollah MortezaAli and Saeideh Ramezani Sani, Study of growth parameters on structural properties of TiO2 nanowires, Journal of Nanostructure in Chemistry, 3 (2013), 35

Hong-En Wang, Zhenhua Chen, Yu Hang leung, Chunyan Luan, Chaoping Liu, Yongbing Tang, Ce Yan, Wenjun Zhang, Juan Antonio Zapien, lgor Bello and Shuit-Tong Lee, Hydrothermal synthesis of ordered single-crystalline rutile TiO2 nanorod arrays on different subtrates, Appl. Phys. Lett., 96 (2010), 263104.

Hsin-Hung Ou, Shang-Lien Lo, Review of titania nanotubes synthesized via the hydrothermal treatment Fabrication, modification, and application, Separation and Purification Technology, 58 (2007), 179-191.

A. Sadeghzadeh Attat, M. Sasani Ghamsari, F. Hajiesmaeilbaigi, Sh. Mirdamadi, K. Katagiri, K. Koumoto, Sol-gel template synthesis and characterization of aligned anatase-TiO2 nanorod arrays with different diameter, Mat. Chem. and Phys., 113 (2009), 856-860.

A. Sadeghzadeh-Attar, M. Sasani Ghamsari, F. Hajiesmaeilbaigi, Sh. Mirdamadi, Template-based growth of TiO2 nanorods by sol-gel process, Quantum Electronics & optoelectronics, 10 (2007), 36-39.

A. Sadeghzadeh Attar, Sh. Mirdamadi, F. Hajiesmaeilbaigi and M. Sasani Ghamsari, Growth of TiO2 Nanorods by Sol-gel Template Process, J. Mater, Sci. Technol., 23 (2007), 611-613.

D.P. Macwan, Pragnesh N. Dave, Shalini Chaturvedi, A review on nano-TiO2 sol-gel type syntheses and its applications, J. Mater Sci., 56 (2011), 3669-3686.

Hyeong Jin Yun, Hynjoo Lee, Nam Dong Kim, Jongheop Yi, Characterization of photocatalytic performance of Silver deposited TiO2 nanorods, Electrochemistry communications, 11 (2009), 363-366.

Chang Hyo Lee, Seung Woo Rhee and Hyung Wook Choi, Preparation of TiO2 nanotube/nanoparticle composite particles and their applications in dye-sensitized solar cells, Lee et al. Nanoscale Research Letters, 7 (2012), 48.

A. Sadeghzadeh Attar, M. Sasani Ghamsari, F. Hajiesmaeilabaigi, Sh. Mirdamadi, K. Katagiri, K. Koumoto, Synthesis and characterization of anatase and rutile TiO2 nanorods by template-assisted methd, J. Mater. Sci, 43 (2008), 5924-5929.

Bharat Bhushan (Ed.), Springer handbook of Nanotechnology, third ed., Ohio State University, Columbus, USA, 2010.


Full Text: PDF

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution 3.0 License.

.......................................................................................................................................................................................................................

ISSN  2279 – 0381 |  IST HOMEJOURNAL HOME | Copyright IST 2012-13

.......................................................................................................................................................................................................................