Electrostatic and Transport Properties of Au Substituted 2,2'-Bipyrazine Molecular Nanowire by Computational Study

K Selavaraju, P Jayalakshmi, S Palanisamy

Abstract


To understand the electrostatic and transport properties of Au and thiol substituted 2,2'-bipyrazine molecular nanowire, a quantum chemical calculation has been carried out using high level Density Functional Theory (DFT) with the basis set LANL2DZ coupled with the Bader’s AIM theory. The applied electric field (0.05-0.26 VÅ-1) altered the geometrical conformation and the electronic energy levels of the molecular wire. The bond topological analysis characterizes the terminal Au-S and S-C bonds of the molecule for zero and various applied fields. The field polarizes the molecule, in consequence of that the dipole moment of the molecule increases from 0.654 D to 10.48 D. For the zero bias, the HOMO-LUMO gap is 2.15 eV; as the field increasesthis gap decreases to 1.2 eV; presumably, this small energy gap at higher field may enhance the conductivity.


References


L. Luo, S.H. Choi, C.D. Frisbie,Probing Hopping Conduction in Conjugated Molecular Wires Connected to Metal Electrodes, Chem. Mater. 23 (2011) 631–645.

R.J. Magyar, S. Tretiak, Y. Gao, H.L. Wang, A.P. Shreve, A joint theoretical and experimental study of phenylene–acetylene molecular wires, Chem. Phys. Lett. 401 (2005) 149-156.

A. Amadei, M.D. Abramo, A.D. Nola, A. Arcadi, G. Cerichelli, M. Asch, Theoretical study of intramolecular charge transfer in π-conjugated oligomers, Chem. Phys. Lett. 434 (2007) 194-199.

J.M. Seminario, Recent development and applications of modern Density Functional theory, Elesvier, New York (1996).

A.D. Becke,Density‐functional thermochemistry. III. The role of exact exchange J. Chem. Phys, 98 (1993) 5648-5652.

M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, J.A. Montgomery, Jr., T. Vreven, K.N. Kudin, J.C. Burant, J.M. Millam, S.S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G.Scalmani, N. Rega, G.A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K.Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J. E. Knox, H.P. Hratchian, J.B. Cross, C. Adamo, J. Jaramillo, R. Gomperts, R.E. Stratmann, O. Yazyev, A.J. Austin, R. Cammi, C. Pomelli, J.W. Ochterski, P.Y. Ayala, K. Morokuma, G.A. Voth, P. Salvador, J.J. Dannenberg, V.G. Zakrzewski, S. Dapprich, A.D. Daniels, M.C. Strain, O. Farkas, D.K. Malick, A.D. Rabuck, K. Raghavachari, J.B. Foresman, J.V. Ortiz, Q. Cui, A.G. Baboul, S. Clifford, J. Cioslowski, B.B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R.L. Martin, D.J. Fox, T. Keith, M.A. Al- Laham, C.Y. Peng, A. Nanayakkara, M. Challacombe, P.M.W. Gill, B. 47 Johnson, W. Chen, M.W. Wong, C. Gonzalez, and J.A. Pople, Gaussian Inc, P. A. Pittsburgh, (2003).

P.J. Hay, W.R. Wadt, Ab initio effective core potentials for molecular calculations. Potentials for the transition metal atoms Sc to Hg,J. Chem. Phys, 82 (1985) 270.

E. Papajak, J. Zheng, X. Xu, Hannah, R. Leverentz, D. G. Truhlar, Perspectives on Basis Sets Beautiful: Seasonal Plantings of Diffuse Basis Functions J. Chem. Theory Comput, 7 (2011) 3027-3034.

N.O. Boyle, GaussSum, Revision 2.1, http://GaussSum.sf.net.

A. Johanasson, S. Stafstrom, Interactions between molecular wires and a gold surfaceChem. Phys. Lett. 322 (2000) 301-306.

K. Selvaraju, M. Jothi and P. Kumaradhas,Exploring the Charge density distribution and the Electrical characteristics of Oligophenylene ethylene molecular nanowire using Quantum chemical and Charge density analysis. J. Comput. Theoret. Chem. 996(2012) 1-10.

P. Srinivasan, A. David Stephen, P. KumaradhasEffect of gold atom contact in conjugated system of one dimensional octane dithiolate based molecular wire: A theoretical charge density study,J. Mol. Struct. (THEOCHEM), 910 (2009) 112-121.

Y. Ye, M. Zhang, H. Liu, X. Liu, J. Zhao, Theoretical investigation on the oligothienoacenes under the influence of external electric field, J. Physics and Chemistry of Solids, 69 (2008) 2615-2621.

B. Kirtman, B. Champagne, D.M. Bishop, Electric Field Simulation of Substituents in Donor−Acceptor Polyenes: A Comparison with Ab Initio Predictions for Dipole Moments, Polarizabilities, and Hyperpolarizabilities J. Am. Chem. Soc. 122 (2002) 8007-8012.

K. Selvaraju,M. Jothi and P. Kumaradhas, Charge density analysis of Quarter thiophene Molecular nanowire under applied electric field: A theoretical study. J. Comput. Theor. Nanosci. 10 (2013) 1-11.


Full Text: PDF

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution 3.0 License.

.......................................................................................................................................................................................................................

ISSN  2279 – 0381 |  IST HOMEJOURNAL HOME | Copyright IST 2012-13

.......................................................................................................................................................................................................................